Series OSR

कोड नं. 56/3 Code No.

रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 15 हैं ।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 30 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।
- Please check that this question paper contains 15 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains **30** questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minutes time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक) CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे अधिकतम अंक : 70

Time allowed: 3 hours Maximum Marks: 70

56/3 1 P.T.O.

सामान्य निर्देश:

- सभी प्रश्न अनिवार्य हैं। (i)
- प्रश्न-संख्या 1 से 8 तक अति लघु-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 1 अंक है । (ii)
- प्रश्न-संख्या 9 से 18 तक लघ्-उत्तरीय प्रश्न हैं। प्रत्येक प्रश्न के लिए 2 अंक हैं। (iii)
- प्रश्न-संख्या 19 से 27 तक भी लघू-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 3 अंक हैं । (iv)
- प्रश्न-संख्या 28 से 30 तक दीर्घ-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 5 अंक हैं । (v)
- आवश्यकतानुसार लॉग टेबलों का प्रयोग करें। कैल्कुलेटरों के उपयोग की अनुमति **नहीं** है। (vi)

General Instructions:

- (*i*) **All** questions are compulsory.
- (ii) Questions number 1 to 8 are very short-answer questions and carry 1 mark each.
- (iii) Questions number 9 to 18 are short-answer questions and carry 2 marks each.
- Questions number 19 to 27 are also short-answer questions and carry (iv)3 marks each.
- (v)Questions number 28 to 30 are long-answer questions and carry 5 marks each.
- Use Log Tables, if necessary. Use of calculators is **not** allowed. (vi)
- दध में परिक्षिप्त प्रावस्था और परिक्षेपण माध्यम क्या हैं ? 1. 1 What are the dispersed phase and dispersion medium in milk?
- कॉपर धातु के शोधन के लिए प्रयुक्त विधि का नाम लिखिए। 2. 1 Name the method used for refining of copper metal.
- NH3 लूइस क्षारक के रूप में क्यों व्यवहार करता है ? 3. 1 Why does NH₃ act as a Lewis base?
- प्राथमिक ऐरोमैटिक ऐमीनों के डाइएज़ोनियम लवणों में परिवर्तन को किस नाम से जाना जाता 4. है ? The conversion of primary aromatic amines into diazonium salts is known as ______ .

56/3 2

निम्न में से कौन-सा तन्तु रूप रखता है ? **5.** नाइलॉन, निओप्रीन, PVC

1

- Which of the following is a fibre?
 - Nylon, Neoprene, PVC
- लैक्टोज़ के जल-अपघटन के उत्पाद लिखिए। 6.

1

Write the products of hydrolysis of lactose.

1

निम्न जोड़े में किरेल अणु को पहचानिए: 7.

Identify the chiral molecule in the following pair:

Write the structure of 2-hydroxybenzoic acid.

2-हाइड्रॉक्सी बैन्ज़ोइक अम्ल की संरचना लिखिए। 8.

1

2

- निम्न समीकरणों को पूरा कीजिए:

 - $C + सान्द्र H_2SO_4 \rightarrow$ (i)
 - $XeF_2 + H_2O \rightarrow$ (ii)

Complete the following equations:

- $C + conc. H_2SO_4 \rightarrow$ (i)
- $XeF_2 + H_2O \rightarrow$ (ii)

निम्न की संरचनाएँ बनाइए :

2

P.T.O.

- (i) XeO_3
- H_2SO_4 (ii)

Draw the structures of the following:

- XeO_3 (i)
- H_2SO_4 (ii)

10.

9.

- निम्न बहलकों को प्राप्त करने के लिए प्रयुक्त एकलकों के नाम लिखिए : 11.
 - टैफ्लॉन (i)
 - बूना-N (ii)

Write the name of monomers used for getting the following polymers:

- (i) Teflon
- (ii) Buna-N
- घनत्व $2.8~\mathrm{g~cm^{-3}}$ का एक तत्त्व फलक केन्द्रित घनाकार (f.c.c.) प्रकार का मात्रक सेल **12.** बनाता है जिसके किनारे की लम्बाई $4 \times 10^{-8}~\mathrm{cm}$ है । इस तत्त्व का मोलर द्रव्यमान परिकलित कीजिए।

(दिया गया है :
$$N_A = 6.022 \times 10^{23} \,\mathrm{Hicm}^{-1}$$
)

An element with density 2.8 g cm⁻³ forms a f.c.c. unit cell with edge length 4×10^{-8} cm. Calculate the molar mass of the element.

(Given:
$$N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$$
)

- जब चुम्बकीय आधूर्ण असमान संख्याओं में समान्तर और असमान्तर दिशाओं में 13. (i) सरेखित होते हैं तो किस प्रकार का चुम्बकत्व देखा जाता है, लिखिए।
 - कौन-सा रससमीकरणिमतीय दोष होने पर क्रिस्टल का घनत्व कम हो जाता है ? (ii)
 - Write the type of magnetism observed when the magnetic (i) moments are aligned in parallel and anti-parallel directions in unequal numbers.
 - (ii) Which stoichiometric defect decreases the density of the crystal?
- निम्न पदों की परिभाषाएँ दीजिए : 14.
 - मोलर चालकता (Λ_m) (i)
 - दितीयक बैटरियाँ (ii)

Define the following terms:

- (i) Molar conductivity (\land_m)
- Secondary batteries (ii)

4

2

2

2

15. निम्न अभिक्रिया की क्रियाविधि लिखिए:

$$\label{eq:ch3CH2OH} \text{CH}_3\text{CH}_2\text{OH} \ \xrightarrow{\ \ \ } \ \text{CH}_3\text{CH}_2\text{Br} + \text{H}_2\text{O}$$

Write the mechanism of the following reaction:

$$\label{eq:ch3CH2OH} \text{CH}_3\text{CH}_2\text{OH} \ \xrightarrow{\ \ \ } \ \text{CH}_3\text{CH}_2\text{Br} + \text{H}_2\text{O}$$

16. एक रासायनिक अभिक्रिया, $R \to P$ के लिए, समय (t) के प्रति सान्द्रता (R) में परिवर्तन को इस ग्राफ में दिखाया गया है ।

- (i) इस अभिक्रिया की कोटि (order) सुझाइए ।
- (ii) वक्र की प्रवणता (ढलान) क्या होगी ?

For a chemical reaction $R \to P$, the variation in the concentration (R) vs. time (t) plot is given as

- (i) Predict the order of the reaction.
- (ii) What is the slope of the curve?
- 17. फेन प्लवन प्रक्रम का आधारमूल सिद्धांत लिखिए। इस प्रक्रम में संचायकों का क्या कार्य होता है ?

Write the principle behind the froth floatation process. What is the role of collectors in this process?

56/3 5 P.T.O.

2

2

3

- (i) राइमर टीमन अभिक्रिया
- (ii) विलियमसन संश्लेषण (synthesis)

Write the equations involved in the following reactions:

- (i) Reimer Tiemann reaction
- (ii) Williamson synthesis
- 19. (i) संकर $[Cr(NH_3)_4 Cl_2]Cl$ का IUPAC नाम लिखिए ।
 - (ii) संकर $[Co(en)_3]^{3+}$ किस प्रकार की समावयवता दिखाता है ? $(en = $\hat{v} 1, 2 3)$
 - (iii) $[NiCl_4]^{2-}$ क्यों अनुचुम्बकीय होता है जबिक $[Ni(CO)_4]$ प्रतिचुम्बकीय होता है ? (परमाणु क्रमांक : $Cr=24,\ Co=27,\ Ni=28)$
 - (i) Write the IUPAC name of the complex [Cr(NH₃)₄ Cl₂]Cl.
 - (ii) What type of isomerism is exhibited by the complex $[Co(en)_3]^{3+}$? (en = ethane-1,2-diamine)
 - (iii) Why is $[NiCl_4]^{2-}$ paramagnetic but $[Ni(CO)_4]$ is diamagnetic? (At. nos. : Cr = 24, Co = 27, Ni = 28)
- 20. (a) निम्न में से प्रत्येक अभिक्रिया के प्रमुख एकहैलोजनी उत्पादों की संरचनाएँ बनाइए :

(i)
$$CH_2OH \xrightarrow{PCl_5}$$

(ii)
$$CH_2 - CH = CH_2 + HBr \longrightarrow$$

- (b) निम्न युग्मों में से कौन-सा हैलोजनी यौगिक $S_{
 m N}2$ अभिक्रिया में अधिक तीव्रता से अभिक्रिया करेगा :
 - (i) CH₃Br अथवा CH₃I
 - (ii) $(CH_3)_3 C Cl$ अथवा $CH_3 Cl$

3

56/3

(a) Draw the structures of major monohalo products in each of the following reactions:

(i)
$$CH_2OH \xrightarrow{PCl_5}$$

(ii)
$$CH_2 - CH = CH_2 + HBr \longrightarrow$$

- (b) Which halogen compound in each of the following pairs will react faster in $S_N 2$ reaction :
 - (i) CH_3Br or CH_3I
 - (ii) $(CH_3)_3 C Cl$ or $CH_3 Cl$

21. निम्नलिखित के कारण लिखिए:

- (i) तृतीयक ऐमीनों (R_3N) की तुलना में प्राथिमक ऐमीनों $(R-NH_2)$ के क्वथनांक उच्चतर होते हैं ।
- (ii) ऐनिलीन फ्रीडेल क्राफ़्ट्स अभिक्रिया नहीं देती ।
- (iii) जलीय विलयन में $(CH_3)_3N$ की तुलना में $(CH_3)_2NH$ अधिक क्षारीय होती है ।

अथवा

निम्न अभिक्रियाओं में A, B और C की संरचनाएँ दीजिए :

(i)
$$C_6H_5NO_2 \xrightarrow{Sn + HCl} A \xrightarrow{NaNO_2 + HCl} B \xrightarrow{H_2O} C$$

(ii)
$$CH_3CN \xrightarrow{H_2O/H^+} A \xrightarrow{NH_3} B \xrightarrow{Br_2 + KOH} C$$

Account for the following:

- (i) Primary amines $(R-NH_2)$ have higher boiling point than tertiary amines (R_3N) .
- (ii) Aniline does not undergo Friedel Crafts reaction.
- (iii) $(CH_3)_2NH$ is more basic than $(CH_3)_3N$ in an aqueous solution.

OR

56/3 7 P.T.O.

3

Give the structures of A, B and C in the following reactions:

(i)
$$C_6H_5NO_2 \xrightarrow{Sn + HCl} A \xrightarrow{NaNO_2 + HCl} B \xrightarrow{H_2O} C$$

(ii)
$$CH_3CN \xrightarrow{H_2O/H^+} A \xrightarrow{NH_3} B \xrightarrow{Br_2 + KOH} C$$

- विश्व स्वास्थ्य दिवस के अवसर पर, डॉ. सतपाल ने पास के गाँव में रहने वाले धनहीन 22. किसानों के लिए एक 'स्वास्थ्य कैम्प' लगाया । जाँच के बाद, उसे यह देख कर धक्का लगा कि बार-बार कीटनाशकों के सम्पर्क में आने के कारण किसानों में से अधिकों को कैन्सर का रोग हो गया था । उनमें से बहतों को मधुमेह भी था । उन्होंने उनमें धनम्क्त औषधियाँ बाँटीं । डॉ. सतपाल ने इस बात की सूचना तत्काल नेशनल ह्यूमन राइट्स कमिशन (NHRC) को दी । NHRC के सुझावों पर सरकार ने निर्णय लिया की डॉक्टरी सहायता और वित्तीय सहायता लोगों को दी जाए और भारत के सभी गाँवों में घातक रोगों के प्रभाव को रोकने के लिए अत्यधिक सुविधा वाले अस्पताल खोले जाएँ।
 - (a) डॉ. सतपाल और (b) NHRC द्वारा दर्शाई गई मान्य बातें लिखिए । (i)
 - अन्तिम कैन्सर में पीड़ा से बचाने के लिए मुख्यतया कौन-सी पीड़ानाशक औषधियाँ (ii) प्रयक्त की जाती हैं ?
 - मधुमेह के रोगियों के लिए सुझाए गए कृत्रिम मधुकारों में से किसी एक का उदाहरण (iii) दीजिए।

On the occasion of World Health Day, Dr. Satpal organized a 'health camp' for the poor farmers living in a nearby village. After check-up, he was shocked to see that most of the farmers suffered from cancer due to regular exposure to pesticides and many were diabetic. They distributed free medicines to them. Dr. Satpal immediately reported the matter to the National Human Rights Commission (NHRC). On the suggestions of NHRC, the government decided to provide medical care, financial

56/3

8

assistance, setting up of super-speciality hospitals for treatment and prevention of the deadly disease in the affected villages all over India.

- (i) Write the values shown by
 - (a) Dr. Satpal
 - (b) NHRC.
- (ii) What type of analgesics are chiefly used for the relief of pains of terminal cancer?
- (iii) Give an example of artificial sweetener that could have been recommended to diabetic patients.

23. निम्न पदों की परिभाषाएँ दीजिए :

3

- (i) न्यूक्लिओटाइड
- (ii) ऐनोमर
- (iii) अनिवार्य ऐमीनो अम्ल

Define the following terms:

- (i) Nucleotide
- (ii) Anomers
- (iii) Essential amino acids

24. (a) अभिक्रिया

$$Mg\left(s\right)+Cu^{2+}\left($$
जलीय $ight) \ o \ Mg^{2+}\left($ जलीय $ight)+Cu\left(s\right)$

के लिए $\Delta_{\mathbf{r}}G^{o}$ परिकलित कीजिए।

दिया गया है : E_{then}^{0} = + 2.71 V, 1 F = 96500 C मोल $^{-1}$

(b) अपोलो (Apollo) अंतरिक्ष प्रोग्राम के लिए विद्युत् शक्ति उपलब्ध कराने के लिए प्रयुक्त सेल के प्रकार का नाम लिखिए।

56/3 9 P.T.O.

Calculate $\Delta_r G^o$ for the reaction (a)

$$Mg(s) + Cu^{2+}(aq) \rightarrow Mg^{2+}(aq) + Cu(s)$$

Given:
$$E_{cell}^{0} = +2.71 \text{ V}$$
, 1 F = 96500 C mol⁻¹

- (b) Name the type of cell which was used in Apollo space programme for providing electrical power.
- स्थिर आयतन अवस्था में $\mathrm{SO}_2\mathrm{Cl}_2$ के प्रथम कोटि के तापीय विघटन के दौरान निम्नलिखित **25.** आंकड़े प्राप्त हुए :

$$SO_2Cl_2$$
 (गैस) \longrightarrow SO_2 (गैस) + Cl_2 (गैस)

प्रयोग	समय/s ⁻¹	सकल दाब/वायुमण्डल
1	0	0.4
2	100	0.7

वेग नियतांक परिकलित कीजिए।

(दिया गया है :
$$\log 4 = 0.6021$$
, $\log 2 = 0.3010$)

The following data were obtained during the first order thermal decomposition of SO_2Cl_2 at a constant volume :

$$SO_2Cl_2(g) \longrightarrow SO_2(g) + Cl_2(g)$$

Experiment	Time/s ⁻¹	Total pressure/atm
1	0	0.4
2	100	0.7

Calculate the rate constant.

(Given:
$$\log 4 = 0.6021$$
, $\log 2 = 0.3010$)

इमल्शन्स क्या होते हैं ? इनके विभिन्न प्रकार क्या हैं ? प्रत्येक प्रकार का एक उदाहरण 26. दीजिए।

What are emulsions? What are their different types? Give one example of each type.

56/3 10 3

- (i) $(CH_3)_3 P = O$ तो पाया जाता है परन्तु $(CH_3)_3 N = O$ नहीं मिलता ।
- (ii) इलेक्ट्रॉन प्राप्त करने की ऋणात्मक चिह्न वाली एन्थैल्पी का मान सल्फ़र की अपेक्षा ऑक्सीजन के लिए कम होता है ।
- (iii) H_3PO_3 की अपेक्षा H_3PO_2 अधिक प्रबल अपचायक है ।

Give reasons for the following:

- (i) $(CH_3)_3 P = O$ exists but $(CH_3)_3 N = O$ does not.
- (ii) Oxygen has less electron gain enthalpy with negative sign than sulphur.
- (iii) H_3PO_2 is a stronger reducing agent than H_3PO_3 .
- 28. (a) निम्न समीकरणों को पूरा कीजिए:
 - (i) $\operatorname{Cr}_2\operatorname{O}_7^{2-} + 2\operatorname{OH}^- \longrightarrow$
 - (ii) $MnO_4^- + 4H^+ + 3e^- \longrightarrow$
 - (b) निम्न के कारण लिखिए:
 - (i) Zn को संक्रमण तत्त्व नहीं माना जाता।
 - (ii) संक्रमण धातु बहुत से संकर बनाते हैं।
 - (iii) ${
 m Mn^{3+}/Mn^{2+}}$ युग्म, ${
 m Cr^{3+}/Cr^{2+}}$ युग्म से कहीं अधिक ${
 m E^o}$ मान रखता है । 2,3

अथवा

- (i) संरचना परिवर्तनशीलता और रासायनिक अभिक्रियाशीलता के संदर्भ में लैन्थेनॉइडों और ऐक्टिनॉयडों के बीच भेद लिखिए।
- (ii) लैन्थेनॉइड शृंखला के उस सदस्य का नाम लिखिए, जो +4 ऑक्सीकरण अवस्था दिखाने के लिए प्रसिद्ध है ।

(iii) निम्न समीकरण को पूरा कीजिए :
$$MnO_4^- + 8H^+ + 5e^- \longrightarrow$$

(iv)
$$Mn^{3+}$$
 और Cr^{3+} में से कौन अधिक अनुचुम्बकीय है और क्यों ?
(परमाण् क्रमांक : $Mn = 25$, $Cr = 24$)

(a) Complete the following equations:

(i)
$$\operatorname{Cr}_2\operatorname{O}_7^{2-} + 2\operatorname{OH}^- \longrightarrow$$

(ii)
$$MnO_4^- + 4H^+ + 3e^- \longrightarrow$$

- (b) Account for the following:
 - (i) Zn is not considered as a transition element.
 - (ii) Transition metals form a large number of complexes.
 - (iii) The E^{o} value for the Mn^{3+}/Mn^{2+} couple is much more positive than that for Cr^{3+}/Cr^{2+} couple.

OR

- (i) With reference to structural variability and chemical reactivity, write the differences between lanthanoids and actinoids.
- (ii) Name a member of the lanthanoid series which is well known to exhibit +4 oxidation state.
- (iii) Complete the following equation:

$$MnO_4^- + 8H^+ + 5e^- \longrightarrow$$

- (iv) Out of Mn^{3+} and Cr^{3+} , which is more paramagnetic and why? (Atomic nos. : Mn = 25, Cr = 24)
- **29.** (a) निम्न अभिकारकों से CH_3CHO की अभिक्रिया करने पर बने उत्पादों को लिखिए :
 - (i) HCN
 - (ii) $H_2N OH$
 - (iii) तनु NaOH की उपस्थिति में $\mathrm{CH_{3}CHO}$

56/3

- निम्न यौगिक युग्मों में अन्तर दिखाने के लिए सरल रासायनिक परीक्षण लिखिए: (b) बैन्जोइक अम्ल और फीनॉल (i) प्रोपेनल और प्रोपेनोन (ii) 3, 2 अथवा निम्न के कारण लिखिए: (a) $\mathrm{CH_{3}COOH}$ की तुलना में $\mathrm{Cl-CH_{2}COOH}$ अधिक प्रबल अम्ल है । (i) कार्बोक्सिलिक अम्ल कार्बोनिल समृह की अभिक्रियाएँ नहीं देते । (ii) निम्न नाम धारित अभिक्रियाओं के लिए रासायनिक समीकरण लिखिए : (b) रोज़ेनमुन्ड अपचयन (i) कैनिजारो अभिक्रिया (ii) CH₃CH₂ - CO - CH₂ - CH₃ और CH₃CH₂ - CH₂ - CO - CH₃ में से (c) कौन आयोडोफ़ॉर्म परीक्षण देता है ? 2, 2, 1 Write the products formed when CH₃CHO reacts with the (a)
- following reagents:
 - **HCN** (i)
 - $H_2N OH$ (ii)
 - CH₃CHO in the presence of dilute NaOH (iii)
- Give simple chemical tests to distinguish between the following (b) pairs of compounds:
 - Benzoic acid and Phenol (i)
 - Propanal and Propanone (ii)

OR

- (a) Account for the following:
 - (i) $Cl CH_2COOH$ is a stronger acid than CH_3COOH .
 - (ii) Carboxylic acids do not give reactions of carbonyl group.
- (b) Write the chemical equations to illustrate the following name reactions:
 - (i) Rosenmund reduction
 - (ii) Cannizzaro's reaction
- (c) Out of $CH_3CH_2 CO CH_2 CH_3$ and $CH_3CH_2 CH_2 CO CH_3$, which gives iodoform test?
- **30.** (a) निम्न पदों की परिभाषा दीजिए:
 - (i) मोलरता
 - (ii) मोलल उन्नयन स्थिरांक (K_b)
 - (b) एक जलीय विलयन में प्रति लिटर विलयन में 15 g यूरिया (मोलर द्रव्यमान = 60 g मोल⁻¹) घुलित है। इस विलयन का परासरण दाब जल में ग्लूकोज़ (मोलर द्रव्यमान = 180 g मोल⁻¹) के एक विलयन के समान (समपरासरी) है। एक लिटर विलयन में उपस्थित ग्लूकोज़ का द्रव्यमान परिकलित कीजिए। 2,3

अथवा

- (a) एथेनॉल और ऐसीटोन का मिश्रण किस प्रकार का विचलन दिखाता है ? कारण दीजिए।
- (b) जल में ग्लूकोज़ (मोलर द्रव्यमान = $180~{\rm g}$ मोल $^{-1}$) के एक विलयन पर लेबल लगा है, 10% (द्रव्यमान अनुसार) । इस विलयन की मोललता और मोलरता क्या होंगे ? (विलयन का घनत्व = $1\cdot 2~{\rm g~mL}^{-1}$)

56/3

- (a) Define the following terms:
 - (i) Molarity
 - (ii) Molal elevation constant (K_b)
- (b) A solution containing 15 g urea (molar mass = 60 g mol⁻¹) per litre of solution in water has the same osmotic pressure (isotonic) as a solution of glucose (molar mass = 180 g mol⁻¹) in water. Calculate the mass of glucose present in one litre of its solution.

OR

- (a) What type of deviation is shown by a mixture of ethanol and acetone? Give reason.
- (b) A solution of glucose (molar mass = 180 g mol⁻¹) in water is labelled as 10% (by mass). What would be the molality and molarity of the solution?

(Density of solution = 1.2 g mL^{-1})

56/3

Marking Scheme

Chemistry - 2014

Outside Delhi- SET (56/3)

www.tiwariacademy.com

	www.tiwariacademy.com	
	Dispersed phase: liquid ,Dispersion medium: liquid / liquid fat dispersed in water	1
	Electrolytic refining	1
	NH ₃ can donate its lone pair of electrons	1
	Diazotization	1
	Nylon	1
	Galactose and Glucose.	1
	ÇI	1
	2–Chlorobutane or or first molecule of the pair.	
	COOH	1
	(i) $C + 2H_2SO_4(conc.) \rightarrow CO_2 + 2SO_2 + 2H_2O$	1
	(ii) $2XeF_2 + 2H_2O \rightarrow 2Xe + 4HF + O_2$	1
	O Xe S O HO HO	1+1
i	(i) Tetrafluoroethene	1
	(ii) 1, 3–butadiene and acrylonitrile	1
2	Given; $d = 2.8g/cm^3$; $Z = 4$; $a = 4 \times 10^{-8} \text{ cm}$ $N_A = 6.022 \times 10^{23} \text{ per mol}$	
	$d = \frac{Z \times M}{a^3 \times N_A} \qquad \text{or} \qquad M = \frac{d \times a^3 \times N_A}{Z}$	1/2
	$\implies \mathbf{M} = \frac{2.8 \text{ g cm}^{-3} \left(4 \times 10^{-8} \text{cm}\right)^3 \times 6.022 \times 10^{23}}{4 \times 10^{-8} \text{ cm}}$	1/2

3	(i) Ferrimagnetism	1		
	(ii) Schottky defect	1		
1	(i) Molar conductivity is defined as the conductivity due to all the ions produced by dissolving	1		
	one mole of an electrolyte in solution.			
	(ii) In the secondary batteries, the reactions can be reversed by an external electrical energy	1		
	source. / These batteries can be recharged by passing electric current and used again and again.			
5	$HBr \rightarrow H^+ + Br^-$			
	H -			
	$CH_3 - CH_2 - \bigcirc -H + H^{\dagger} \longrightarrow CH_3 - CH_2 - \bigcirc -H$	1/2		
	н			
	$CH_3 - CH_2 - O - H \longrightarrow CH_3 - CH_2 + H_2O$			
		1/2		
	+ D=			
	CH ₃ -CH ₂ Br CH ₃ -CH ₂ -Br			
		1		
	Or			
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
	$\stackrel{\uparrow}{R}$ (where $R = -CH_3$)			
	(Where it Silly)			
5	(i) Zero order reaction	1		
	(ii) slope= - k	1		
7	This method is based upon the preferential wetting of mineral / ore particles by oil and gangue by	1		
	water.			
	Collectors enhance non-wettability of the mineral / ore particles.	1		
3	Reimer-Tiemann reaction			
	OH OH OH	1		
	CHCl ₃ + aq NaOH CHO H+ CHO			
	Williamson synthesis			
c	Get More Learning Materials Here : CLICK HERE Www.studentbro.in			
,	#\$ THE STATE OF TH			

	(iii) In [NiCl ₄] ²⁻ ; Cl ⁻ acts as weak ligand therefore does not cause forced pairing, thus electrons	
	will remain unpaired hence paramagnetic.	1/2 +
	In [Ni(CO)4]; CO acts as strong ligand therefore causes forced pairing, thus electrons will	1/2
	becomes paired hence diamagnetic.	
)	(a)	
	(i) CH ₂ Cl	1
	(ii) CH ₂ CH-CH ₃	1
	(ii) CH ₂ CH-CH ₃	1
	Br	
	(b) (i) CH ₃ –I	1/2 +1/2
	(ii) CH ₃ -Cl	/2 1/
1	(i) As primary amines form inter molecular H – bonds, but tertiary amines don't form H – bonds.	1
	(ii) Aniline forms salt with Lewis acid AlCl ₃ .	1
	(iii) This is because of the combined effect of hydration and inductive effect (+I effect).	1
	Or	
1		1/2+1/2
	(i) $C_6H_5NO_2 \xrightarrow{Sn+HCl} C_6H_5NH_2 \xrightarrow{NaNO_2+HCl} ; 273K \longrightarrow C_6H_5N_2^+Cl^- \xrightarrow{H_2O} C_6H_5OH$	+1/2
	A B C	
	(ii) CH ₃ CN $\xrightarrow{\text{H}_2\text{O}/\text{H}^+}$ CH ₃ COOH $\xrightarrow{\text{NH}_3}$ CH ₃ CONH ₂ $\xrightarrow{\text{Br}_2 + \text{KOH}}$ CH ₃ NH ₂	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/2+1/1
	A B C	+1/2
2	(i) (a) dedicated towards work/ kind/ compassionate (any two).	1
	(b) Dutiful / caring / humane in the large interest of public health in rural area.	1/2
	(any other suitable value)	
	(ii) Narcotic analgesics	1/2
	(iii) Aspartame / Saccharin / Alitame / Sucrolose.(any one)	1
3	(i) A unit formed by the combination of a nitrogen containing hetrocyclic base,5-carbon atom	1
	sugar and phosphoric acid.	
		I 4
(Get More Learning Materials Here : 【 CLICK HERE (>>)	o.in

1	(a) Given $E^{\circ}Cell = +2.71V$ & $F = 96500C$ $n = 2$ (from the given reaction)	
	$\Delta rG^{O} = -n x F x E^{O}Cell$	1/2
	$\Delta rG^{O} = -2 \times 96500 \text{ C mol}^{-1} \times 2.71 \text{ V}$	1/2
	= -523030 J / mol or -523.030 kJ / mol	1
	(b) Hydrogen – oxygen fuel Cell / fuel cell	1
5	$SO_2 Cl_2 \rightarrow SO_2 + Cl_2$	
	At $t = 0s$ 0.4 atm 0 atm	
	At $t = 100s$ $(0.4 - x)$ atm x atm	
	Pt = 0.4 - x + x + x	
	Pt = 0.4 + x	
	0.7 = 0.4 + x	
	x = 0.3	
	$k = \frac{2.303}{t} \log \frac{p_i}{2p_i - p_t}$	1
	$k = \frac{2.303}{t} \log \frac{0.4}{0.8-0.7}$	1
	$k = \frac{2.303}{100} \log \frac{0.4}{0.1}$	1
	$k = \frac{2.303}{100} \times 0.6021 = 1.39 \times 10^{-2} \text{ s}^{-1}$	1
5	These are liquid-liquid colloidal systems or the dispersion of one liquid in another liquid.	1
	Types: (i) Oil dispersed in water (O/W type) Example; milk and vanishing cream	1/2 +1/2
	(ii) Water dispersed in oil (W/O type) Example; butter and cream.	1/2 +1/2
	(Any one example of each type)	
7	(i) As N can't form 5 covalent bonds / its maximum covalency is four.	1
	(ii) This is due to very small size of Oxygen atom / repulsion between electrons is large in	1
	relatively small 2p sub-shell.	
	(iii) In H ₃ PO ₂ there are 2 P–H bonds, whereas in H ₃ PO ₃ there is 1 P–H bond	1
3	(a) (i) $Cr_2O_7^{2-} + 2 OH^- \longrightarrow 2CrO_4^{2-} + H_2O$	1
	(ii) $MnO_4^- + 4H^+ + 3e^- \longrightarrow MnO_2 + 2H_2O$	1
	(b) (i) Zn / Zn^{2+} has fully filled d orbitals.	1
	(ii) This is due to smaller ionic sizes / higher ionic charge and availability of d orbitals.	1
	(iii) because Mn $^{+2}$ is more stable(3d ⁵) than Mn ³⁺ (3d ⁴). Cr ⁺³ is more stable due to $t_2g^3 \ / \ d^3$	1
G	iet More Learning Materials Here : CLICK HERE (>>>	o.in

Lanthanoids	Actinoids	
Atomic / ionic radii does not show much	Atomic / ionic radii show much variation /	
variation / +3 is the most common oxidation	Besides +3 oxidation state they exibit	
state, in few cases +2 & +4	+4,+5,+6,+7 also.	
They are quite reactive	Highly reactive in finely divided state	
(Any two Points)		
(ii) Cerium (Ce ⁴⁺)		
(iii) $MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$		
(iv) Mn ³⁺ is more paramgnetic		
pecause Mn ³⁺ has 4 unpaired electrons (3d ⁴) there	efore more paramagnetic whereas Cr ³⁺ has 3	
unpaired electrons (3d ³).		
(a) (i)		
CH ₃ CN		
>c_		
H OH		
(ii) CH ₃ CH=N–OH		
(iii)		
dil. NaOH		
2 CH_3 -CHO \longleftrightarrow CH ₃ -CH-	CH ₂ -CHO	
ÓН		
(b) (i) Add neutral FeCl ₃ in both the solutions, p	shenol forms violet colour but benzoic acid does	
not.		
(ii) Tollen's reagent test: Add ammoniacal solution of silver nitrate (Tollen's reagent) in		
both the solutions propanal gives silver mirror whereas propanone does not.		
(or any other correct test)		
<u> </u>	R	

1

1

1

1

- (ii) The carbonyl carbon atom in carboxylic acid is resonance stabilised.
- (b) (i) Rosenmund reduction:

$$\begin{array}{c} O \\ II \\ CI \end{array} \xrightarrow{Pd - BaSO_4} \begin{array}{c} CHO \\ \end{array}$$

Benzoyl chloride

Benzaldehyde

Or $RCOCl \xrightarrow{H_2 Pd-BaSO_4} RCHO +HCl.$

(ii) Cannizzaro's Reaction:

Or With bezaldehyde

(a)

(c) CH_3 – CH_2 – CH_2 –CO– CH_3 .

1

1

 $\frac{1}{2}$

1/2

1

1

- (i) Molarity is defined as number of moles of solute dissolved in one litre of solution.
- (ii) It is equal to elevation in boiling point of 1 molal solution.
- (b) For isotonic solutions: π urea = π glucose

$$\frac{W_{\text{urea}}}{M_{\text{urea}} \times V_{S}} = \frac{W_{\text{Glucose}}}{M_{\text{Glucose}} \times V_{S}} \quad \text{as volume of solution is same}$$

$$\frac{W_{\text{urea}}}{M_{\text{urea}}} = \frac{W_{\text{Glucose}}}{M_{\text{Glucose}}} \quad \text{or} \quad \frac{15g}{60g \, \text{mol}^{-1}} = \frac{W_{\text{Glucose}}}{180g \, \text{mol}^{-1}}$$

$$W_{Glucose} = \frac{15g \times 180g \text{ mol}^{-1}}{60g \text{ mol}^{-1}} = 45g$$

OR

(a) It shows positive deviation.

It is due to weaker interaction between acetone and ethanol than ethanol-ethanol interactions.

(b) Given:
$$W_B = 10g \ W_S = 100g$$
, $W_A = 90g \ M_B = 180g/mol$ & $d = 1.2g/mL$

$$M = \frac{Wt \% x density x 10}{Mol.wt.}$$

$$M = \frac{10 \times 1.2 \times 10}{180} = 0.66 \text{ M}$$
 or 0.66 mol/L

$$m = \frac{W_B \times 1000}{M_B \times W_A (in g)}$$

$$m = \frac{10 \times 1000}{180 \times 90}$$
= 0.61m or 0.61mol/kg (or any other suitable method)

).).	Name	Sr. No.	Name
	Dr. (Mrs.) Sangeeta Bhatia	9	Sh. Partha Sarathi Sarkar
	Dr. K.N. Uppadhya	10	Mr. K.M. Abdul Raheem
	Prof. R.D. Shukla	11	Mr. Akileswar Mishra
	Sh. S.K. Munjal	12	Mrs. Maya George
	Sh. Rakesh Dhawan	13	Sh. Virendra Singh Phogat
	Sh. D.A. Mishra	14	Dr. (Mrs.) Sunita Ramrakhiani
	Sh. Deshbir Singh	15	Ms. Garima Bhutani
	Ms. Neeru Sofat		

1